Majitelé 3D tiskáren už týdny vyrábějí štíty pro zdravotníky, mnozí to ale zpočátku zkoušeli i s tiskem všemožných masek. Jakmile se totiž začal koronavirus šířit světem a z ochranných prvků se stalo nedostatkové zboží, tiskaři spustili CAD a začali prototypovat.
Odborníci z akademické sféry a experti na tisk ale pochybovali, jestli bude taková maska dostatečně bezpečná. Prakticky nejdostupnější technologie FDM/FFF (fused deposition modeling/fused filament fabrication), kdy se taví drobné vlákno umělé hmoty a nanáší se po vrstvičkách na tiskovou desku, totiž nemusí být na mikroskopické úrovni úplně nejvhodnější. V hotovém výrobku jsou vzduchové komory, na povrchu propadliny a často i drobné trhlinky.



Nejdostupnější FDM/FFF 3D tisk, kdy se rozehřátou tryskou vytlačuje na tiskovou plochu drobné vlákénko plastu, se ještě před pár dny k výrobě ochranných masek nedoporučoval. Postupně se to ale mění.
Stručně řečeno, z takto vytištěného respirátoru by se mohla záhy stát houba, která bude živnou půdou pro patogeny a svému nositeli přinese více rizik, než užitku. Výrobu podobných masek na FDM/FFF tiskárnách proto nakonec mnozí opustili a vrhli se naopak na už zmíněný tisk ochranných štítů.
Masce BUT-H1 pomůže rukavice nebo kondom
Postupně se to ale mění, další a další výzkumníci totiž přicházejí s nejrůznějšími vylepšováky. Třeba Ústav automatizace a měřící techniky Fakulty elektrotechniky a komunikačních technologií VUT v Brně, jehož inženýři se nedávno pochlubili polomaskou BUT-H1.
Představení polomasky na videu:
BUT-H1 lze vyrobit z běžných tiskových strun PLA. PET, PET-G, ABS nebo třeba CPE, přičemž autoři už na webu zveřejnili všechny díly ve formátu STL. Jak je to možné? Brněnští akademici jednoduše navrhli masku chránící ústa a nos takovým způsobem, že je přes ní možné natáhnout dostatečně pružnou latexovou rukavici.




V případě nedostupnosti rukavice lze použít i prezervativ, píše na svém webu brněnské Vysoké učení technické.
Maska je dostatečně univerzální na to, abyste do přední části mohli nainstalovat libovolný čtvercový částicový filtr – ať už nanovlákennou membránu, ke které se ale běžný smrtelník tak snadno nedostane, tak třeba filtrační médium z kabinových filtrů osobních automobilů, domácích čističek vzduchu, vysavačů a podobně.
Vždy je třeba zároveň myslet na to, aby takový filtr mohl vůbec prakticky fungovat, tedy aby propouštěl vzduch v takovém množství, že jej udýcháte jak vy, tak třeba starší osoba.
Maska z PET-G podle ČVUT a Y Soft
Běžným tiskovým materiálům nakonec dalo zelenou i ČVUT, tamní Fakulta elektrotechnická totiž upravila jeden z modelů volně šířených v katalogu Thingiverse. Inženýři provedli ve spolupráci s Ústavem imunologie a mikrobiologie 1. lékařské fakulty Univerzity Karlovy testy (PDF), které kupodivu dopadly poměrně dobře.

Závěr testu upravené polomasky z běžné FDM/FFF 3D tiskárny
S vhodně zvolenými tiskovými materiály (PET-G, ASA) a nastavením kvality (výška vrstvy 150 μm) lze masku vyrobenou na FDM/FFF dezinfikovat i pomocí běžných prostředků. Třeba isopropylalkoholu.



Polomaska z PET-G s nanovlákennou membránou podle ČVUT a Y-Softu
Maska, jejíž model je už volně k dispozici v katalogu Thingiverse, je stejně jako ta od brněnského VUT připravená pro čelní výměnný textilní filtr, kterým může být v podstatě jakýkoliv vhodný materiál. Tady se už nicméně zapojila do hry brněnská společnost Y Soft, která zakoupila nanovlákennou membránu.
Nanovlákenný průmysl, byť stále poměrně mladý, má v Česku bohatou tradici, průmyslová výroba nanovláken a nanotextilu je totiž jedním z vynálezů vědců z liberecké univerzity. Dnes se výrobci základní textilie i koncových produktů sdružují třeba v Asociaci nanotechnologického průmyslu ČR.



Jedna z nanovlákenných membrán české výroby. Role na první fotografii na omak připomíná třeba pečící papír.
Nanovlákenná textilie má natolik drobnou strukturu z jednotlivých mikroskopických vláken, že otvory v ideálním případě projdou jen molekuly plynů, zatímco pevné částice velikosti několika desítek nm a více se zastaví. Patogeny včetně virů jsou přitom často ještě o řád větší – o bakteriích, pylových zrnech a aerosolech nemluvě.
Mohla by viry zabít rouška ponořená do solného roztoku?
A do třetice ještě jeden tip k domácí výrobě. Na sklonku března s ním na Facebooku přišel Stanislav Polzer z ostravské VŠB-TUO, přičemž vychází ze studie, kterou publikoval časopis Nature/Scientific Reports už před třemi lety. Jejími autory byl tým vědců ze soulské univerzity Kyung Hee a kanadské University of Alberta.




Výsledky experimentů s prosolenou filtrační membránou roušek
Výzkumníci se tentokrát pokusili ničit patogeny naprosto jednoduchým způsobem – pomocí chloridu sodného, tedy kuchyňské soli. Celý vtip spočívá v naložení ochranného filtru/roušky do slaného roztoku a poté vysušení.

Solná technika by moha vylepšit funkci nejprimitivnějších filtrů třeba i u ručně vyráběných roušek s vnitřní kapsičkou pro papírový kapesník apod.
Když pak člověk skrze masku s takovým filtrem dýchá, případně na filtru ulpí drobný aerosol z okolí, zaschlá sůl se rozpustí a opět krystalizuje. A právě rekrystalizace a vysoký osmotický tlak solného roztoku se postarají o destabilizaci proteinů virů a jejich zničení. Autoři studie zmiňují zejména rodinu virů způsobující běžnou chřipku.
Nutno však podotknout, že chybí studie, která by potvrdila stejnou funkci i u aktuálního koronaviru a hlavně v reálných podmínkách mimo laboratoř. Polzer tedy pracuje s předpokladem, že se jedná o společný rys všech podobných patogenů.
Solný postup samozřejmě nenahrazuje nejpokročilejší techniky ochrany, ale může v ideálních podmínkách zvýšit obrannou funkci základních roušek a filtrů o jednotky až desítky procent a hlavně prodloužit jejich životnost na celý den.
My si ty respirátory a roušky prostě vyrobíme!